

Population: 100,000

Social Housing Complex

- Built: 1957
- 4 Stories
- 42 Apartments
- Minimal renovations since construction
- Within 100-year floodplain
- Flooded in 1962, 1978, 2004, 2015, 2017
- Elevation above baseline river height: 1.6m
- Omethi River channeled in 1929

Study Option 1: Renaturalization

Re-naturalize the channel to increase absorptive capacity of the Omethi River.

Loss of trail, ½ of parking lot, expropriation of some private land.

Capital works needed beyond geographic scope displayed here.

Study Option 2: Retaining Wall

Install a hard barrier to prevent overland and groundwater flooding of housing complex.

¼ of paid-parking required for installation

Protects against current 100-year flood height

Study Option 3: Dyke Installation

Install a dyke along the length of the Omethi River within the jurisdiction of Newarre.

Multi-use trail to be reinstalled on top of the dyke.

Can be scaled to expected height of 2050 100-year storm.

Study Option 4:
Building Renovation
Relocate all HVAC, water
and other mechanical
systems from the
basement to the main
floor.

Raise most components of main floor above current 100-year flood level.

Option	Pros	Cons	Cost
#1 Channel Restoration	 Higher absorptive capacity protects downstream property Reduces flashiness of floods Greatest capacity to mitigate flood intensification impacts Urban flood mitigation co-benefits 	 Highest cost option Loss of popular trail, parkland, parking revenue. Need to purchase private land Greatest benefits require restoration beyond geographical confines of study area 	\$\$\$\$\$
#2 Retaining Wall Installation	 Protects against overland and groundwater flooding Lowest cost option Leaves trail, park space and ¾ of parking accessible 	 May exacerbate flooding downstream Rainfall intensification by 2050 reference period (2040-2070) expected to expand 100-year floodplain beyond barrier 	\$
#3 Dyke Installation	 Small loss of park, parking lot or private property space Can be scaled to height of 2050 intensification projections Multi-use trail can be relocated above it 	 Will exacerbate flooding downstream of installation Greatest benefits require installation beyond geographical confines of study area Highest cost of operations and maintenance Highest consequence of infrastructure failure High cost option Some public and private land expected to be needed for dyke space requirements 	\$\$\$\$
#4 Complex Renovation	 Reduces flood sensitivity (damage costs, recovery time, relocation needs) Low cost option Does not increase flood exposure of other properties 	 Exposure to flooding events unchanged 10 families will be forced to leave complex, while the City is already managing a long waitlist Fewer access points likely to decrease use of trail 	\$\$
Others Options			

Key Considerations:

Preferred Choice:

Rationale: