Population: 100,000 #### **Social Housing Complex** - Built: 1957 - 4 Stories - 42 Apartments - Minimal renovations since construction - Within 100-year floodplain - Flooded in 1962, 1978, 2004, 2015, 2017 - Elevation above baseline river height: 1.6m - Omethi River channeled in 1929 # **Study Option 1:** Renaturalization Re-naturalize the channel to increase absorptive capacity of the Omethi River. Loss of trail, ½ of parking lot, expropriation of some private land. Capital works needed beyond geographic scope displayed here. Study Option 2: Retaining Wall Install a hard barrier to prevent overland and groundwater flooding of housing complex. ¼ of paid-parking required for installation Protects against current 100-year flood height Study Option 3: Dyke Installation Install a dyke along the length of the Omethi River within the jurisdiction of Newarre. Multi-use trail to be reinstalled on top of the dyke. Can be scaled to expected height of 2050 100-year storm. Study Option 4: Building Renovation Relocate all HVAC, water and other mechanical systems from the basement to the main floor. Raise most components of main floor above current 100-year flood level. | Option | Pros | Cons | Cost | |--------------------------------|--|---|------------| | #1 Channel
Restoration | Higher absorptive capacity protects downstream property Reduces flashiness of floods Greatest capacity to mitigate flood intensification impacts Urban flood mitigation co-benefits | Highest cost option Loss of popular trail, parkland, parking revenue. Need to purchase private land Greatest benefits require restoration beyond geographical confines of study area | \$\$\$\$\$ | | #2 Retaining Wall Installation | Protects against overland and groundwater flooding Lowest cost option Leaves trail, park space and ¾ of parking accessible | May exacerbate flooding downstream Rainfall intensification by 2050 reference period
(2040-2070) expected to expand 100-year floodplain
beyond barrier | \$ | | #3 Dyke
Installation | Small loss of park, parking lot or private property space Can be scaled to height of 2050 intensification projections Multi-use trail can be relocated above it | Will exacerbate flooding downstream of installation Greatest benefits require installation beyond geographical confines of study area Highest cost of operations and maintenance Highest consequence of infrastructure failure High cost option Some public and private land expected to be needed for dyke space requirements | \$\$\$\$ | | #4 Complex
Renovation | Reduces flood sensitivity (damage costs, recovery time, relocation needs) Low cost option Does not increase flood exposure of other properties | Exposure to flooding events unchanged 10 families will be forced to leave complex, while the City is already managing a long waitlist Fewer access points likely to decrease use of trail | \$\$ | | Others Options | | | | **Key Considerations:** Preferred Choice: Rationale: